A THREE-DIMENSIONAL LAMINAR BOUNDARY
LAYER ON A PERMEABLE PLATE

V.S8. Kaplan and V.M. Shcheglova UDC 532.522

We examine the laminar boundary layer on a permeable half-plane for the case in which the
streamline of the outside flow is a parabola, and in which the velocity of suction or expulsion
is proportional to (x + const)i/ 2. We have found the velocity profiles in the boundary layer,
as well as the frictional stress distribution on the half-plane.

The solution of the complete equations for a three-dimensional laminar boundary layer is a rather
complex problem. We are therefore interested in examining the simplest cases, using these as an exam-~
ple by means of which to determine certain significant features of flow in a three-dimensional boundary
layer. One such case, studied by Loos [1],* involves the streamlining of a fixed hali-plane case, studied
by a "parabolic" external flow (the streamlines are parabolas)., The simplicity of the problem permits us
simultaneously to examine the interesting problem (from the practical standpoint) of the influence exerted
by the suction or expulsion on the characteristics of a three-dimensional houndary layer. The attempt to
solve the problem of the boundary layer on a permeable half-plane streamlined by a parabolic flow was
undertaken by Kozlov [2]. However, in [2] the equations determining the velocity profile in the boundary
layer were incorrectly derived. Below we solve the problem considered by Kozlov. In addition to solu-
tions of the form given in 1] and [2], we have found yet another solution — a self-similar solution.

Let a semiinfinite flat plate (a half-plane) be streamlined by a flow of an incompressible viscous
fluid, Let us examine the laminar boundary layer on the plate in the case in which the projections of the
velocity of the external flow onto the axis of the coordinate system shown in Fig.1 are determined by the
formulas

U == const, W = a + bx, (1)
where ¢ and b are constants. The streamlines of this flow are parabolas:
2Uz = 2ax + bx® 4 const. (2)

Parabolic flow is vortical, the vortex vector Qis directed along the normal to the plate surface, so that
Qy = —h, while the pressure varies only along the z-axis:

p = const — pbUz. (3)

Because of the infinity of the plate in the z-direction and because the projections of the velocity of the
external flow are independent of z, the velocity in the boundary layer, given appropriate conditions at the
wall, are also independent of z. The boundary-layer equations for this case therefore assume the form

2,
LR R s (4
ox dy oy?
2,
ugau__l_v_a..mi:ub.{_'v v s (5)
ox Jy dy*
ou du
— 4+ —=0. 6
ox dy ©®

*W, Wuest [9] studied a special case of this problem,
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Fig.1. Effect of suction or expulsion on the flow pattern
in the boundary layer: 1) projections of the streamlines
of the external flow onto the plane of the plate; 2) ex-
treme streamlines for s = 0; 3) the same, for s = —0.5;
4) the same for s = 5.

It is assumed that the suction or expulsion of the liguid is accomplished through the plate surface along the
normal to that surface at a velocity vy = vy(x). Then

u=0, v=—uv,(x), w =0 wheny = 0;

u=U, w=a+bx when y == oo, (™
with v, positive in the case of suction, and negative in the case of expulsion.

System (4)-(6) can be reduced to a system of ordinary differential equations, one of which is the
Blasius equation. We can do this in the following two ways.

1. Let us seek the projections of the veloeity in the boundary layer in the form

1
4= = UF {g), 0= —;]/ 2 (Fay— P, w = aw ) + bro, ()

vl

where

1

U s vU
w=gdl o =g % (8

Then Eqgs. (4)~(6) and conditions (7) will be satisfied for any values of the constants U, @, and b, if the func-
tions F, w;, and wy are solutions of the boundary-value problems:

F'" 4+ FF' =0, F(0)=s, FF{0) =0, F (c0)=2, 9
Wy +Fuy; =0, w(0)=0, wy(o)=1, (10)
w + Fuo;—2Fw = —4, w(0)=0, w(0)=1. (11)

The constant s, determining the intensity of expulsion or suction, must be specified. Assuming in (8)-(11)
that s = 0, we come to the problem solved by Loos [1], and if we assume that ¢ = b = 0 we come to the two-
dimensional problem solved by Emmons and Leigh .[3].

2. If b = 0 and the signs of the constants ¢ and b coincide, system (4)-(6) has a self-similar solution
(see the table of boundary conditions in [4]):

1,/ U ,
u=—;-U1-"(n2), ”:71/ x:-xo Ene—F) @ =b(x+ x)P(ny), (12)
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TABLE 1. The Function &(n) for Various Values of s

/|

/

—1,20 —1,15 —1,10 ~—1,05 —1,00 —0,75 —0,5 —0,25

<

0,0000 | 92,0000 { 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000 | 0,0000
0,6003 | 0,5732 | 0,5553 | 0,5422 | 0,5319 | 0,5025 | 0,4905 | 0,4867
1,183 1,116 1,069 1,034 1,006 0,9168 | 0,8693 | 0,8415
1,743 1,619 1,533 1,467 1,413 1,237 1,138 1,074
2,276 2,077 1,939 1,832 1,744 1,462 1,304 1,204
2,775 2,481 2,278 2,122 1,996 1,597 1,383 1,254

3,535 2,824 2,644 2,332 2,163 1,851 1,395 1,249
3,647 3,097 2,731 2,460 2,248 1,639 1,361 1,213
4,004 3,295 2,830 2,508 2,257 1,679 1,300 1,165
4,298 3,413 2,862 2,480 2,199 1,490 1,231 1,117
4,522 3,440 2,812 2,387 2,087 1,389 1,165 1,077

4,665 3,401 2,694 2,244 1,940 1,201 1,110 1,047
4,726 3,280 2,523 2,068 1,774 1,204 1,069 1,026
4,700 3,004 2,316 1,876 1,607 1,135 1,040 1,014
4,583 2,858 2,091 1,687 1,453 1,084 1,022 1,007
4,392 2,590 1,866 1,513 1,321 1,049 1,011 1,003

4,124 2,309 1,657 1,364 1,216 1,027 1,005 1,001
3,795 2,035 1,476 1,246 1,137 1,014 1,002 1,000
3,426 1,984 1,320 1,157 1,082 1,007 1,001
3,036 1,568 1,214 1,095 1,046 1,003 1,000
2,649 1,392 1,133 1,054 1,025 1,001

cwownt roey Cumain Dwowte

DAND IO BB bk B WWWLW WIDINK -~ 0000

,2 2,285 1,257 1,078 1,029 1,012 1,000

,4 1,961 1,160 1,043 1,014 1,006

,6 1,588 1,094 1,022 1,007 1,002

8 1,448 1,052 1,011 1,003 1,001

,0 1,306- 1,024 1,005 1,001 1,000

2 1,180 1,017 1,002 1,000

4 1,111 1,008 1,001

,6 1,081 1,003 1,000

,8 1,032 1,001

,0 1,016 1,000

,2 1,007

4 1,003

,6 1,001

.8 1,000

s
\ 0 ; 1 ‘ 2 l 3 4 5
0,0000 0,0000 0,0000 06,0000 34,0000 0,0000

3,1 0,2637 0,2916 0,3309 0,3753 0,4213 0,4668
0,2 0,4879 0,5187 0,5678 0,6219 0,6749 0,7237
3,3 0,6743 0,6904 0,7322 0,7790 0,8228 0,8608
0,4 0,8251 0,8161 0,8423 0,8757 0,9066 0,9318
0,5 0,9433 0,9045 0,9135 0,9334 0,9525 ©0,9676
0,6 1,032 0,9639 0,9575 0,9664 0,9769 0,9852
0,7 1,096 1,001 0,9832 0,9845 0,9893 0,9935
0,8 1,137 1,023 0,9971 0,9939 0,9954 0,9972
0,9 1,161 1,033 1,004 0,9983 0,9982 0,9989
1,0 1,171 1,036 1,006 1,0000 0,9994 0,9996
1.1 1,170 1,034 1,006 0,9999 0,9999
1,2 1,161 1,030 1,006 1,0000 1,0000
1,3 1,147 1,025 1,005

1,4 1,130 1,020 1,003

1.5 1,112 1,016 1,002

1,6 1,094 1,012 1,002

1,7 1,077 1,009 1,001

1,8 1,062 1,006 1,001

1,9 1,049 1,004 1,000

2,0 1,038 1,003

2,1 1,028 1,002

2,2 1,021 1,001

2,3 1,015 1,001

2,4 1,011 1,000

2,5 1,008

2,6 1,005

2,7 1,004

2,8 1,002
2,9 1,002

3,0 1,001

3.1 1,001

3,2 1,000
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TABLE 1 (Continued)

\l 6 7 8 9 10 1 12

0 0,0000 0,0000 0,0000 0,0000 | 0,0000 | 0,0000 | 0,0000
0,05 0,2979 0,3284 0,3582 0,3873 | 0,4154 0,4425 | 0,4685
0,10 0,5105 0,5520 0,5909 0,6271 0,6605 0,6912 0,7194
0,15 0,6610 0,7031 0,7409 | 0,7745 0,8040 | 0,8300 | 0,8527
0,20 0,7668 0,8045 0,8369 | 0,8644 | 0,8875 | 0,9069 0,9231
0,25 0,8406 0,8721 0,8980 0,9189 | 0,9358 0,9493 | 0,9601
0,30 0,8918 0,9168 0,9365 | 0,9518 | 0,9636 0,9726 0,9794
0,35 0,9270 0,9462 0,9608 | 0,9715 | 0,9795 | 0,9852 0,9894
0,40 0,9511 0,9655 0,9759 | 0,9833 0,0885 | 0,9921 0,9946
0,45 0,9675 0,9780 0,9853 | 0,9902 | 0,9936 0,9958 | 0,9973
0,50 0,9785 0,9860 0,9911 0,9943 | 0,9964 | 0,9978 | 0,9986
0,55 0,9859 0,9912 0,9946 0,9967 0,9980 |-0,9988 | 0,9993
0,60 0,9908 0,9945 0,9967 0,9981 0,9989 0,9994 0,9997
0,65 0,9941 0,9966 0,9981 0,9989 | 0,9994 0,9997 | 0,9998
0,70 0,9962 0,9979 0,9989 | 0,9994 0,9997 | -0,9998 | 0,9999
0,75 0,9976 0,9987 0,9993 0,9997 0,9998 0,9999 1,0000
0,80 0,9985 0,9992 0,9996 0,9998 | 0,9999 1,0000
0,85 0,9991 0,9995 0,9998 | 0,9999 1,0000
0,90 0,9994 0,9997 0,9999 | 0,9999
0,95 0,9996 0,9998 0,9999 1,0000
1,00 0,9998 0,9999 1,0000
1,05 0,9999 0,9999
1,10 0,9999 1,0000
1,15 1,0000

in which case

S Vg R Ry - S
2 92 V(x+x0) s (. D) x+xo ) xo_._b_’

with the function F(n,) satisfying conditions (9), while the function ®(7,) is a solution for the boundary-value
problem

O LFY —FD=—4, DO =0, D()=1l 13)
Comparison of (9), (10), and (11), (13) shows that

= —; Fng  w = (14

Consequently, solutions (8) and (12) are found simultaneously as a result of the solution of the boundary-
value problems (9) and (13). The fact that the boundary value problem (4)-(7) has two solutions is a result
not only of the difference between the velocities at the wall, but also a consequence of the difference "initial®
conditions: solution (8) corresponds to a uniform velocity distribution for x = 0, while solution (12) corre-
sponds to a nonuniform distribution. When g = 0, the two solutions coincide.

Despite the differences in the boundary conditions and in the method of finding the solutions, (8) and
(12) are closely related to each other. Let us assume in formulas (8) that ¢ = 0 and let us transfer the co-
ordinate origin to the point (x;, 0, 0), x; > 0. In this new system of coordinates formulas (8) assume the
same form as formulas (12), but in the place of x;, we will have x;. The quantity x, can be assumed to be
equal to x; in solution (12). The flow which is then described by (12), beginning from the leading edge, co-
incides with the flow described by (8) for ¢ = 0 and x 2x;,. We will therefore not consider solution (12) in the
following.

The boundary-value problem (9) has been solved in [3], where we find tables of the function F and its
derivatives for various values of s, These tables can also be used for the calculation of the function &.
The boundary-value problem (13) was solved by replacing the differential equation by a difference equation
and subsequently applying a pivot method. The results of the calculation are shown in Table 1. It should be
noted that there exists a limit value s = S« such that F"(0) - 0 a8 s —~8e. This limit value is not achieved,
since the boundary-value problem (9) has no solution satisfying the condition F"(0) = 0. (Indeed,
given the initial conditions F(0) =s, F'(0) = F"(0) = 0, the solution of the Blasius equation is F = s
= const.) In other words, when s < s«, there is no Prandtl boundary layer. According to the Emmons and
Leigh calculations 3] we have sq ~—1.23849,
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TABLE 2, Functions of the Parameter s, Determining the Fric-
tional Stress at the Wall

H 4 g k 5 @ ] k
—1,20 0,01343178 | 3,040 452,7 2 4,6776781 3,85 | 1,648
—1,15 0,03859712 | 2,933 152,0 3 6,5289066 4,549 | 1,393
-—1,10 0,06911819 | 2,868 82,99 4 8,4295589 5,329 1,261
—1,05 0,10383601 | 2,821 54,36 5 10,359623 6,144 1,185
—1,00 0,14207803 ; 2,789 39,26 6 12,308238 7,000 1,137
—0,75 0,37445574 | 2,718 14,52 7 14,269139 7,888 1,105
—0,50 0,65796369 | 2,723 8,278 8 16,238520 8,798 1,083
—0,25 0,97872869 | 2,767 5,655 9 18,213964 9,725 1,067

0 1,3282293 2,836 4,270 10 20,193871 10,66 1,055
0,5 2,0912914 3,026 2,893 11 22,177150 11,51 1,046
1 12 24,163033 12,57 1,039

2,9154668 | 3,266 2,240

The components Tx and 74 of the frictional stress at the wall, referred to the dynamic head (I/Z)DUZ,
are expressed by the formulas

‘ {(15)
— 2 aw) e - =
== o oy ey~ T E R Ty
where
- bx — bx, a 2 ” ,
= R . b= = F"(0), = &' (0).
X=— RE U . o (0 p (9)

The quantities @, 3, and k as functions of s are shown in Table 2. We see from the table that « >k >1
when s, < s < =, For a fixed value of s the frictional stress 7 = VTXE + 'rzg at the wall — infinite at the lead-
ing edge, diminishing with increasing x when b = 0 — reaches its minimum at the straight line x = 1/k(1

+ §§)1 2 and then again increases. Substituting (15) into the equation for the family of the friction lines

dx dz

Tx T

and integrating this equation, we find for t # 0 that the frictional stress at each point of the plate is directed
along the tangent to the parabola
- k(= % >2 (—_ bz (16)
2—"7(x+—l?', - const z—-—U )
passing through this point. When b = 0 the friction lines degenerate into straight lines Uz = ax + const,

From (15) we determine the resistance-force components 0 =x = I, z{ = z = z, of the rectangular segment
of the plate and the coefficients of frictional resistance:

a a B+ =
Cx: 3 sz "_l+x0>’
= VTRe = VRe (3
where
Ul - bl
=L, =2
Re v U

Let us examine the flow pattern in the boundary layer. In the simplest case of b = 0, the external
flow is uniform and inclined toward the leading edge; from (8) and (14) we have w/u = W/U. Consequently,
the inclination of the leading plate edge toward the line of the freestream velocity exerts no influence on the
development of the boundary layer, i. e., the problem reduces to the familiar [3] two~dimensional gelf-
similar problem of the streamlining of a permeable plate by a uniform flow at a velocity U; = VU? + a2,

This situation, established for an impermeable plate in a gradient-free flow by Strumingkii [5] and Sears
[6], remains valid even in the case of fluid suction or expulsion through the plate surface at a velocity v,
~ (X + const)‘l/z.

If b = 0, but @ = 0, solution (8) will also be self-similar and the velocity profiles in the boundary layer
will be expressed by the functions F' and &, The streamline of (2) in this case will be parabolas of the form
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Fig, 2. Profiles ofthe velocity w for positive (a) and neg-
ative (b) valuesof x(I— s = 511 —s = 0; IIl — s = —0,5; a:
1) x = 0.25; 2) 0.5; 3) 1; 4) 2; 5) 4; b: 1) X =—0,25; 2)
0.5); 3) (=1); 4) (~2); 5) (~4).

7= —;— ** -+ const. (17)

Near the plate surface the direction of the flow is determinedby the extreme streamline which coincides with
the friction lines, i.e., with the parabolas

z= -% x* -+ const. (18)

The coefficient k > 1 in Eq. (18) quantitatively characterizes the well-known fact that the streamlines in the
boundary layer are bent more steeply than in the external layer, The more intense the suction (1 <k

< 4.27), the closer the extreme streamline to the streamlines of the external flow. This is explained by
the fact that those layersofthe fluid which have been decelerated the most are removed from the flow, the
velocity component that is parallel to the wall increases near the wall and, consequently, there is an in-
crease in the centrifugal forces which act on the fluid particles moving along the bend trajectories., Since
the pressure gradient does not change in this case (it is set by the external flow), the streamlines in the
boundary layer are bent less, With expulsion (4.27 < k < =), conversely, the fluid enters the flow at a vel~
ocity which is equal to zero in the direction parallel to the wall, The fluid is seemingly decelerated and the
slope of the streamlines increase (see Fig.1). Because the slope of the streamline is greater in the boundary
layer than in the external flow, the fluid particles pass through the point of the boundary layer that are sit-
uated along some vertical. These fluid particles move out of a region in which the pressure is greater than
in the region from which the fluid particles come in the external flow, intersecting the same vertical [1].
This explains the "hump" in the profile of w for small s (& > 1, beginning from some value of %} and it is
further explained by the fact that the velocity of the external flow on that same vertical. '

The effect of suction or expulsion on surface friction can be seen from (15) and Table 2, The com-
ponent Ty 38 in the case of two-dimensional conditions, increases with suction and diminishes with expulsion.

266



The component 74 also increases with suction (although more slowly), while expulsion results in virtually

no change in the magnitude of this component, This is a consequence of the opposed effect of the two fac~
tors. On the one hand, expulsion reduces the inclination of the velocity profile at this point to the axis

at the wall, i, e,, it reduces friction. On the other hand, because of the increase in the slope of the stream-
line in the boundary layer, particles reach this point at a greater velocity and the velocity-profile inclina-
tion increases as a result, i,e,, friction increases, When s < —0.75 the second factor becomes predom-
inant.

In the general case g # 0, b # 0 the solution given in (8) will no longer be self-similar and the profiles -
for the projections of w at various distances from the leading edge will differ., Figure 2 shows the profiles
of the dimensionless velocity W = w/a for several values of the dimensionless parameter X = bx/a and var-
ious 8. The curves show that when a/b > 0 the velocity distribution in the boundary layer coincides quali-
tatively with the velocity distribution for ¢ = 0. Again, with sufficient distance from the leading edge, we
find a "hump" on the curves for w, with the expulsion increasing this "hump," while suction diminishes it.
When ¢/b < 0 the pattern is altered markedly. The component W of the velocity of the external flow changes
direction, and near the leading edge this component is directed counter tothe pressure gradient. Conse-
quently, the profile for w, changing sign through the thickness of the layer, assumes the form which is
found in two-dimensional flows beyond the separation point (see the profiles for w when x = —0.5 in Fig. 2b).

However, there is no separation of the boundary layer in the case of parabolic external flow. In the
special cases considered above, as well as in the general case in which a/b > 0, there can be ho separation,
since the velocity vector in the boundary layer has no component at any point directed counter to the pres-
sure gradient, If /b < 0, such a component exists near the leading edge. However, from the location of
the extreme streamlines, as shown in (16), we see that in this case there will be no separation of the bound-
ary layer — the fluid will flow in the direction perpendicular to that of the pressure gradient. We can prove
the absence of separation by employing the criteria for the separation of a three-dimensional laminar
boundary layer (see [7] and [8]).

In conclusion, let us note that when s= 1.033 the "expulsive™ effect of the boundary layer is offset by the
suction and the component of velocity that is normal to the wall disappears at the outside edge of the bound-
ary layer. This is the only value of s at which theboundary layer actually "comes into contact" with the
external flow,

NOTATION
X, ¥, and z are Cartesian coordinates (see Fig. 1); -
u, v, and w are the projections of the velocities in the boundary layer ontothe x-, y-, and z-axes,
respectively;
Uand W are the projections of the external-flow velocities onto the x- and z-axes, respectively;
2 is the suction for expulsion velocity;
p is the pressure;
p is the density;
s is the viscosity coefficient;
v is the kinetic coefficient of viscosity;
s is the suction or expulsion parameter;
Ty and 7, are the frictional-stress components at the wall;
Cfx and Cgy are the coefficients of frictional resistance;
aand b are constants in the expression. for W;
%o = a/b;
X = X/Xo.
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